Grand canonical monte carlo simulation study of methane adsorption at an open graphite surface and in slit-like carbon pores at 273 K.

نویسندگان

  • Piotr Kowalczyk
  • Hideki Tanaka
  • Katsumi Kaneko
  • Artur P Terzyk
  • Duong D Do
چکیده

Grand canonical Monte Carlo (GCMC) simulation was used for the systematic investigation of the supercritical methane adsorption at 273 K on an open graphite surface and in slit-like micropores of different sizes. For both considered adsorption systems the calculated excess adsorption isotherms exhibit a maximum. The effect of the pore size on the maximum surface excess and isosteric enthalpy of adsorption for methane storage at 273 K is discussed. The microscopic detailed picture of methane densification near the homogeneous graphite wall and in slit-like pores at 273 K is presented with selected local density profiles and snapshots. Finally, the reliable pore size distributions, obtained in the range of the microporosity, for two pitch-based microporous activated carbon fibers are calculated from the local excess adsorption isotherms obtained via the GCMC simulation. The current systematic study of supercritical methane adsorption both on an open graphite surface and in slit-like micropores performed by the GCMC summarizes recent investigations performed at slightly different temperatures and usually a lower pressure range by advanced methods based on the statistical thermodynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption of argon from sub- to supercritical conditions on graphitized thermal carbon black and in graphitic slit pores: a grand canonical Monte Carlo simulation study.

In this paper we consider the adsorption of argon on the surface of graphitized thermal carbon black and in slit pores at temperatures ranging from subcritical to supercritical conditions by the method of grand canonical Monte Carlo simulation. Attention is paid to the variation of the adsorbed density when the temperature crosses the critical point. The behavior of the adsorbed density versus ...

متن کامل

Molecular Simulation of Carbon Dioxide Adsorption in Chemically and Structurally Heterogeneous Porous Carbons

Capture of carbon dioxide from fossil fuel power plants via adsorption and sequestration of carbon dioxide in unmineable coal seams are achievable near-term methods of reducing atmospheric emissions of this greenhouse gas. To investigate the influence of surface heterogeneity upon predicted adsorption behavior in activated carbons and coal, isotherms were generated via grand canonical Monte Car...

متن کامل

Boltzmann bias grand canonical Monte Carlo.

We derive an efficient method for the insertion of structured particles in grand canonical Monte Carlo simulations of adsorption in very confining geometries. We extend this method to path integral simulations and use it to calculate the isotherm of adsorption of hydrogen isotopes in narrow carbon nanotubes (two-dimensional confinement) and slit pores (one-dimensional confinement) at the temper...

متن کامل

Molecular Level Models for CO2 Sorption in Nanopores

Adsorption of carbon dioxide in slit-shaped carbon micropores at 273 K has been studied by means of the grand canonical Monte Carlo (GCMC) simulations and the nonlocal density functional theory (NLDFT). Three molecular models of CO2 have been used. Long-run GCMC simulations were performed with the three-center model of Harris and Yung (J. Phys. Chem. 1995, 99, 12021). For NLDFT calculations, we...

متن کامل

The adsorption behaviour of CH4 on microporous carbons: effects of surface heterogeneity.

The effects of chemical and structural surface heterogeneity on the CH4 adsorption behaviour on microporous carbons have been investigated using a hybrid theoretical approach, including the use of density functional theory (DFT), molecular dynamics (MD), and grand canonical Monte Carlo (GCMC) simulations. Bader charge analysis is first performed to analyze the surface atomic partial charges. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 21 12  شماره 

صفحات  -

تاریخ انتشار 2005